РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

КЛАПАН ЗАПОРНО-РЕГУЛИРУЮЩИЙ И РЕГУЛИРУЮЩИЙ ОДНОСЕДЕЛЬНЫЙ

С ЭЛЕКТРИЧЕСКИМ ИСПОЛНИТЕЛЬНЫМ МЕХАНИЗМОМ

25ч945п 25ч945нж

Содержание

1	Описание и работа	3
	1.1 Назначение	3
	1.2 Состав	4
	1.3 Устройство и работа	4
	1.4 Основные технические характеристики	6
	1.5 Габаритные и присоединительные размеры	6
	1.6 Показатели надежности	7
	1.7 Маркировка и пломбирование	8
	1.8 Консервация	8
	1.9 Упаковка	8
2	Использование по назначению	8
	2.1 Подготовка к использованию	8
	2.2 Указания по монтажу	9
3	Техническое обслуживание	9
	3.1 Общие указания	9
	3.2 Меры безопасности	10
	3.3 Неисправности и методы их устранения	10
	3.4 Порядок разборки и сборки	11
	3.5 Испытания	13
4	Хранение	14
5	Транспортирование	15
6	Утипизация	15

Производитель оставляет за собой право изменять конструкцию без изменения основных характеристик изделия.

Настоящее руководство по эксплуатации (далее РЭ) предназначается для ознакомления потребителя с устройством, функциональными свойствами, правилами монтажа, эксплуатации и хранения, соблюдение которых обеспечит полное использование технических возможностей изделия в течение срока службы. РЭ распространяется на клапаны запорно-регулирующие и регулирующие односедельные с электрическим исполнительным механизмом (далее клапаны) на условное давление PN1,6 МПа (16 кгс/см²).

Клапан обозначается таблицей фигур 25ч945п и 25ч945нж:

- 25 тип арматуры (клапан регулирующий);
- ч материал корпуса (чугун серый);
- 9 вид привода (электрический);
- 45 номер модели;
- п/нж материал уплотнительных поверхностей (п пластмассы (фторопласт), нж сталь коррозионно стойкая).

1 Описание и работа

1.1 Назначение.

Клапаны предназначены для установки в качестве регулирующих органов в системах автоматического регулирования технологических процессов.

Клапаны изготавливаются в соответствии с требованиями ТУ 3722-011-50987615-2002 и по рабочим чертежам, утвержденным в установленном порядке.

Клапаны должны комплектоваться ЭИМ общепромышленного исполнения.

Клапаны, предназначенные для взрывопожароопасных сред, должны комплектоваться ЭИМ во взрывозащищенном исполнении.

Присоединение к трубопроводу – фланцевое. Технические требования к фланцам клапанов, конструкция и размеры, присоединительные размеры и размеры уплотнительных поверхностей фланцев - исполнение В ряд 1 по ГОСТ 33259.

Ответные фланцы для клапанов - приварные плоские по ГОСТ 33259.

Материал основных деталей, соприкасающихся со средой, для не разгруженной конструкции указан в таблице 1, для разгруженной конструкции в таблице 2.

Таблица 1

Наименование детали	25ч945п	25ч945нж			
Корпус	Чугун СЧ20 ГОСТ 1412				
Крышка	Сталь 20 ГОСТ 1050				
Плунжер, седло	Сталь 20Х13 ГОСТ 5632				
Уплотнение в затворе	«мягкое» (Фторопласт – 4	«металл по металлу»			
	ΓΟCT 10007)				
Уплотнение сальниковое	Фторопласт – ГОСТ 10007	ТРГ			
Прокладка	ТРГ				

Таблица 2

Наименование детали	25ч945п	25ч945нж			
Корпус	Чугун СЧ20 ГОСТ 1412				
Крышка	Сталь 20 ГОСТ 1050				
Плунжер, седло	Сталь 20Х13 ГОСТ 5632				
Уплотнение в затворе	«мягкое» (Фторопласт – 4	«металл по металлу»			
	ΓΟCT 10007)				
Уплотнение сальниковое	Силикон (фторсиликон)	Aflas			
Прокладка	ТРГ				

Пробное и рабочие давления – по ГОСТ 356.

Пределы применения клапанов в зависимости от температуры рабочей среды указаны в таблице 3.

Таблица 3

Условное	Пробное давление	Рабочее давление Р _р , Мпа (кг/см²) при			
(номинальное)	Р _{пр} , Мпа (кг/см²)	температуре среды			
давление PN, Мпа (кг/см²)		120°C	200°C	250°C	300°C
1,6 (16)	2,4 (24)	1,6 (16)	1,5 (15)	1,4 (14)	1,3 (13)

Показатели назначения клапанов приведены в таблице 4.

Таблица 4

Наименование	Условия эксплуатации по ГОСТ 15150					
параметра	У2					
	Класс опасности по ГОСТ 12.1.007	4				
Рабочая среда	Группа по Руководству по Безопасности «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов»	Б (в), В: жидкие и газообразные среды, нейтральные к материалам деталей, соприкасающихся со средой (вода, пар насыщенный, воздух, рассолы, щелочи, жидкие нефтепродукты и др.)				
	Коррозионная устойчивость по ГОСТ 33260-2015	Скорость коррозии материала корпуса не должна превышать 0,5 мм в год				
Температура рабочей среды, °С	25ч945п	от минус 15 до 150				
среды, С	25ч945нж	от минус 15 до 300				
Температура окружающей среды, °С	от минус 15 до 50					

1.2 Состав.

Принципиальная конструкция клапана представлена на рисунке 1.

Составными частями изделия являются:

1 - ЭИМ; 4 - плунжер; 7 - уплотнение сальниковое;

2 - корпус; 5 - седло; 8 - гайка сальника;

3 - крышка; 6 - прокладка; 9 - гайка.

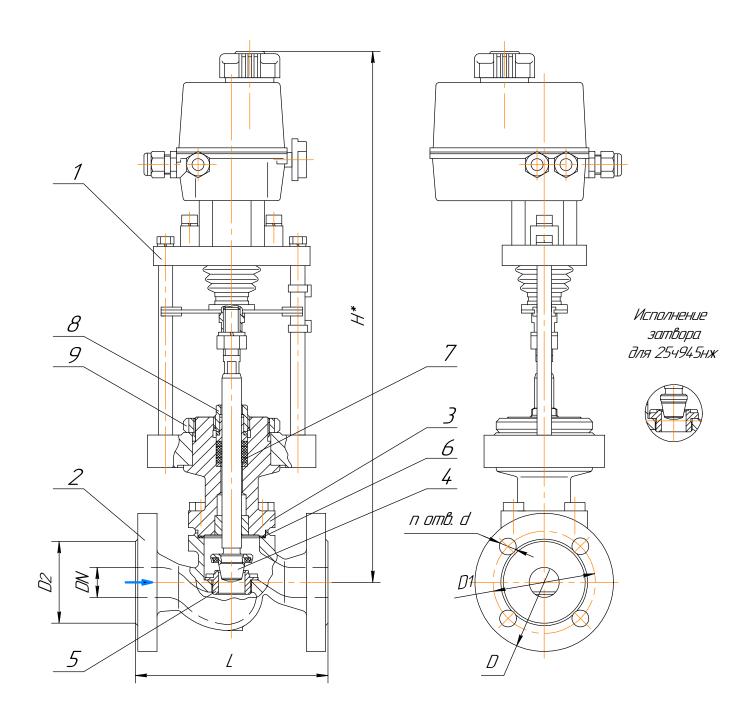


Рисунок 1 Неразгруженная конструкция

Принципиальная конструкция клапана разгруженного по давлению представлена на рисунке 2.

Составными частями изделия являются:

1 - ЭИМ; 2 - корпус; 3 - фланец; 4 - плунжер; 5 - седло; 6 - гильза; 7 - уплотнение сальниковое; 8 - стакан; 9 - гайка;

10 - шайба.

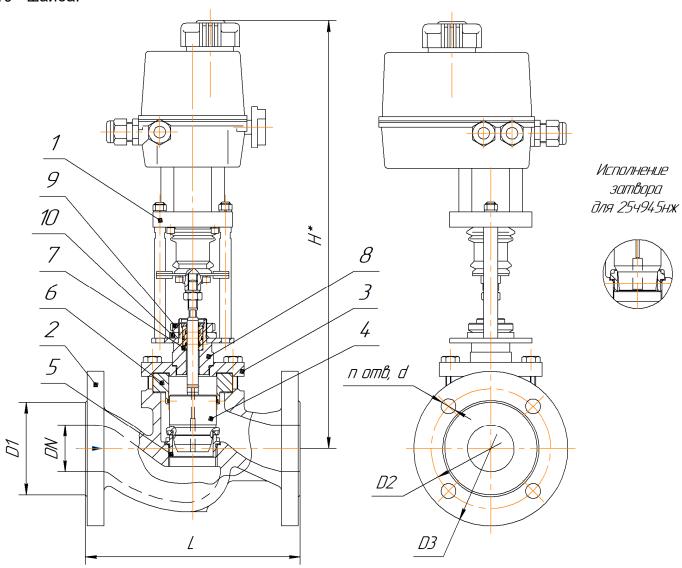


Рисунок 2 Разгруженная конструкция

- 1.3 Основные технические характеристики.
- 1.3.1 Основные технические характеристики клапанов не разгруженных по давлению приведены в таблице 5, а для разгруженной конструкции в таблице 6. Основные технические данные и характеристики ЭИМ приведены в инструкции по монтажу, настройке и эксплуатации на ЭИМ.
- 1.3.2 Конкретные значения условной пропускной способности, исполнение и другие технические данные указаны в паспорте на изделие.

Таблица 5

Таблица 5														
Диаметр номинальный DN, мм	15	20	25	32	40	90	65	80	100	125	150	200	250	300
Давление номинальное PN, Мпа (кгс/см²)		1,6 (16)												
Пропускная характеристика					ЛИН	ейная /	равн	опро	цент	ная				
Рабочий ход плунжера, мм	10				20			32				50		
Условная пропускная способность Кvy, м³/ч	0,1; 0,16; 0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 3,2; 4,0	1,6; 2,5; 4,0; 6,3	1,1; 0,16; 0,25; 0,32; 0,4; 0,5; 0,63; 0,8; 1,0; 1,25; 1,6; 2,0; 2,5;3,2;4,0; 5,0; 6,3; 8,0; 10; 16	4; 6,3; 10; 12,5; 16	10; 16; 25; 40	10; 12,5; 16; 20; 25; 32; 40; 63	25; 32; 40; 50; 63; 100	40; 50; 63; 80; 100; 160	63; 80; 100; 125; 160; 250	100; 125; 160; 200; 250; 320	160; 250; 400	250; 400; 630	500; 800; 1250	1000; 1250; 1600
Допустимый перепад давлений ∆Р, МПа (кгс/см²)		,6 (16	6)		1	,2 (12)			0,8	(8)		0,	5 (5)	
Относительная утечка в	ительная 25ч945п – клапан													
затворе по ГОСТ 23866, %	регули	25ч945п / 25ч945нж – клапан				25ч945п / 25ч945нж – клапан регулирующий 0,1 при ∆Рисп=0,4МПа (4кгс/см²))		
от Кvy		25ч945нж – клапан запорно-регулирующий					0,005 при ∆Рисп=PN							
Тип ЭИМ		ST mini, ST 0						ST 0.1,	- -)	ST 1, ST 2		ST 2	ļ	Ξ
Масса клапана, кг	5,5-10	6-11	7-12	9-13	12-18	16-20	31-33	34-36	43-46	68-85	102	140	280	350

Таблица 6	Таблица 6											
Диаметр номинальный DN, мм	32	40	20	65	80	100	2	125	150	200	250	300
Давление номинальное PN, МПа (кгс/см²)		1,6 (16)										
Пропускная характеристика				лине	ейная /	равн	НОГ	іроцен	тная			
Рабочий ход плунжера, мм		20			32					50		
Условная пропускная способность Кvy, м³/ч	4; 6,3; 10; 12,5; 16	10; 16; 25; 40	10; 12,5; 16; 20; 25; 32; 40; 63	25; 32; 40; 50; 63; 100	40; 50; 63; 80; 100; 160	63; 80; 100; 125;	160; 250	100; 125; 160; 200; 250; 320	160; 250; 400	250; 400; 630	500; 800; 1250	1000; 1250; 1600
Допустимый перепад давлений ∆Р, МПа (кгс/см²)					,	1,6 (16))				
Относительная утечка в затворе	запор	5п – кл но-регу	/лирую	щий			0,0	01 при	і ∆Рисг	ı=PN		
утечка в затворе по ГОСТ 23866, % от Куу	25ч94 регул	.5п / 25 ирующі	ч945нж ий	(– клаг	тан		0,1	При ∆	Рисп=0),4МПа	(4кгс/с	sM²)
-	25ч94	5нж – н	клапан /лирую	1 () (0,0	0,005 при <u>АРисп=</u> PN				
Тип ЭИМ	REGAD A ST	in AMI	05-12	REGAD A ST 0 / AUMA ES 06-4		ES 06-4		REGAD	AST 0,1	REGAD	A ST 1	REGAD A ST 2
Масса клапана, кг	9-13	12-18	16-20	31-33	34-36	43-46) }	85	102	140	280	350

1.4 Устройство и работа.

Рабочая среда проходит через корпус литой поз.2, имеющий проходную конструкцию с патрубками на одной оси. Направление подачи рабочей среды – «под седло».

Затвор состоит из плунжера поз.4 и седла поз.5. Крышка поз.3 обеспечивает направление плунжера поз.4.

Герметичность клапана относительно внешней среды обеспечивается прокладкой поз.6 и уплотнением сальниковым поз.7.

Сальниковый узел, образованный уплотнением сальниковым поз.7 и гайкой сальника поз.8, находится в крышке поз.3.

Управление клапаном осуществляется ЭИМ поз.1 поступательного типа. Плунжер поз.4 соединен со штоком ЭИМ, на который поступает сигнал от внешнего автоматического регулятора температуры или давления на открытие или закрытие клапана. Усилие, развиваемое прямоходным ЭИМ, передается на плунжер поз.4, который перемещается вверх и вниз, изменяя площадь открытого проходного отверстия седла поз.5 и регулируя расход рабочей среды.

Относительная утечка в затворе – по ГОСТ 23866

1.5 Габаритные и присоединительные размеры приведены в таблице 7.

Таблица 7

DN	D	D1	D2	L	n	d
15	95	65	47	130		
20	105	75	58	150		14
25	115	85	68	160		
32	135	100	78	180	4	
40	145	110	88	200	4	
50	160	125	102	230		
65	180	145	122	290		18
80	195	160	133	310		
100	215	180	158	350		
125	245	210	184	400	8	
150	280	240	212	480		22
200	335	295	268	600		22
250	405	355	320	730	12	26
300	460	410	370	850		26

1.6 Показатели надежности:

Назначенный срок службы – 10 лет.

Назначенный ресурс – 70000 часов.

Наработка на отказ – 11 000 часов.

- 1.6.1 Потенциально возможными отказами клапанов являются:
- потеря прочности корпусных деталей;
- потеря плотности материала корпусных деталей;
- потеря герметичности неподвижных прокладочных соединений корпусных деталей по отношению к внешней среде;
 - потеря герметичности затвора;
- нарушение геометрической формы деталей, препятствующее нормальному функционированию (заклинивание подвижных частей, неустранимые повреждения рабочих поверхностей затвора, неустранимый дополнительной подтяжкой пропуск среды через сальник, срез резьбы);
- изменение размеров вследствие износа или коррозионного разрушения, препятствующее нормальному функционированию.
 - 1.6.2 Критериями предельного состояния клапанов являются:
- начальная стадия нарушения целостности корпусных деталей (потение, капельная течь);
- недопустимое изменение размеров элементов по условиям прочности и функционирования арматуры;
 - потеря герметичности в разъемных соединениях, неустранимая их подтяжкой;
 - возникновение трещин на основных деталях;
- увеличение крутящего момента при управлении арматурой до значений выше норм, указанных в эксплуатационной документации ЭИМ.

Предельные состояния клапана предшествуют его отказам.

- 1.6.3 В случае критического отказа, при необходимости проведения ремонта изделия, персонал должен выполнить рекомендации по устранению согласно п. 3.3 настоящего РЭ.
 - 1.7 Маркировка и пломбирование.
- 1.7.1 На лицевой стороне корпуса клапана выполнена маркировка литым способом: PN, DN, стрелка направления подачи рабочей среды, материал корпуса. На обратной стороне товарный знак предприятия-изготовителя.

На табличке, прикрепленной к крышке клапана, указаны: знак обращения на рынке TC, наименование и товарный знак предприятия-изготовителя, таблица фигур (25ч945п, 25ч945нж), PN, DN, Kvy, заводской номер, дата изготовления.

- 1.7.2 Наружные поверхности клапана должны быть окрашены в соответствии с ГОСТ 4666 (эмаль черная НЦ-132 ГОСТ 6631) или в цвет по согласованию с Заказчиком.
 - 1.7.3 Разъемные соединения клапана должны иметь гарантийные пломбы.

Места гарантийного пломбирования, указанные в сборочных чертежах, должны быть отмечены пятном эмалью красной НЦ-132 ГОСТ 6631.

1.8 Консервация.

Клапан должен быть подвергнут консервации, обеспечивающей защиту от коррозии при транспортировании и хранении не менее 3 лет.

Вариант защиты – ВЗ-1 по ГОСТ 9.014.

Консервация всех неокрашенных (обработанных и необработанных) поверхностей деталей должна производиться маслом консервационным К-17 ГОСТ 10877. Слой масла после нанесения должен быть сплошным, без воздушных пузырей и инородных включений.

Допускается вариант защиты ВЗ-0 по ГОСТ 9.014.

1.9 Упаковка.

Упаковка должна обеспечивать защиту клапана от повреждений при транспортировании и хранении.

Категория упаковки – КУ-2 по ГОСТ 23170.

Вариант упаковки – ВУ-1 по ГОСТ 9.014.

Клапан должен быть завернут в бумагу упаковочную, при этом внутренние полости должны быть предохранены от загрязнений заглушками, и упакован в ящик дощатый по ГОСТ 2991 или ящик из гофрированного картона по ГОСТ 9142.

Сопроводительная документация должна быть герметично упакована в пакет по ГОСТ 12302, изготовленный из полиэтиленовой пленки по ГОСТ 10354. Пакет с документацией закрепляется на самом изделии.

Маркировка транспортной тары – по ГОСТ 14192.

2 Использование по назначению

- 2.1 Подготовка к использованию.
- 2.1.1 Объем и последовательность внешнего осмотра изделия.

При получении груза с клапаном следует убедиться в полной сохранности тары. При наличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией к транспортной организации.

Распаковать ящик, вынуть изделие. Проверить комплектность поставки в соответствии с паспортом.

Внешним осмотром проверить:

- отсутствие внешних механических повреждений клапана;
- соединение клапана с ЭИМ;
- легкость перемещения штока ЭИМ, переместив его на несколько миллиметров от первоначального положения с помощью ручного дублера (шток должен перемещаться плавно без рывков).
 - 2.1.2 Меры безопасности при подготовке изделия к использованию:
- необходимо соблюдать общие правила техники безопасности при работе с трубопроводной арматурой;
- строповка клапана должна осуществляться за элементы конструкции. Запрещается строповка за стойки ЭИМ;
- перед установкой клапана на трубопровод необходимо из внутренних полостей и с привалочных плоскостей удалить консервационную смазку, а затем промыть их уайт-спиритом.

2.2 Указания по монтажу:

- установочное положение относительно трубопровода преимущественно горизонтальное (ЭИМ вверх), допустимое до 90° от вертикали с расположением стоек ЭИМ в одной вертикальной плоскости, а для DN≥150мм обязательное горизонтальное, ЭИМ вверх. При наклонном расположении клапана под ЭИМ следует установить опоры. Установка ниже горизонтальной линии запрещается;
- учитывать пространство, необходимое для демонтажа крышки ЭИМ при настройке (указывается в инструкции по эксплуатации ЭИМ);
- устанавливать клапан на трубопровод следует так, чтобы направление движения среды совпадало с направлением стрелки на корпусе;
- рабочая среда не должна содержать механических примесей более 70мкм. Если размер частиц превышает 70мкм, то перед клапаном должен быть установлен фильтр;
- рекомендуется устанавливать клапаны на трубопроводах, имеющих прямые участки до и после клапана длиной не менее 10 условных проходов (DN);
- клапан не должен испытывать нагрузок от трубопровода (изгиб, сжатие, растяжение, кручение, перекосы, вибрация, несоосность патрубков, неравномерность затяжки крепежа). При необходимости должны быть предусмотрены опоры или компенсаторы, снижающие нагрузку от трубопровода;
- место установки клапана должно обеспечивать условия проведения осмотров и ремонтных работ. При расположении клапана на высоте более 1,6 м следует предусматривать специальные площадки и лестницы для проведения осмотра при эксплуатации;
- для обеспечения демонтажа клапана с трубопровода рекомендуется устанавливать запорную арматуру;

- электромонтаж производить в соответствии с эксплуатационной документацией на ЭИМ:
 - корпус ЭИМ должен быть обязательно заземлен;
- перед пуском системы непосредственно после монтажа все клапаны должны быть открыты и должна быть произведена тщательная промывка и продувка системы.

3 Техническое обслуживание

3.1 Общие указания.

В процессе эксплуатации следует производить периодические осмотры в сроки, установленные графиком, в зависимости от режима работы системы, но не реже одного раза в 6 месяцев.

При осмотре необходимо проверить:

- общее состояние клапана;
- состояние крепежных соединений (при необходимости произвести их подтяжку);
- герметичность прокладочных соединений и сальникового уплотнения.
- 3.2 Меры безопасности.
- 3.2.1 Требования безопасности при монтаже и эксплуатации по ГОСТ 12.2.063.
- 3.2.2 Персонал, производящий работы с клапанами, а также консервацию и переконсервацию их, должен пройти инструктаж по технике безопасности, быть ознакомлен с инструкцией по эксплуатации и обслуживанию, иметь индивидуальные средства защиты (спецодежду, очки, рукавицы и т.д.), соблюдать требования пожарной безопасности.
- 3.2.3 В конструкции электроприводов должно быть предусмотрено устройство для подключения заземления в соответствии с «Правилами устройства электроустановок» и ГОСТ 12.2.007.0. Для обеспечения безопасной эксплуатации различных технологических линий приводные устройства должны иметь конечные выключатели для сигнализации и отключения ЭИМ в конечных положениях. Органы управления клапана должны исключать возможность их самопроизвольного включения.

Электроприводы должны иметь ручной дублер управления.

- 3.2.4Для обеспечения безопасной работы категорически запрещается:
- производить работы по ремонту и демонтажу при наличии давления среды в полости клапана;
- производить подтяжку и замену сальникового уплотнения, подтяжку фланцевых соединений при наличии давления в системе;
 - снимать клапан с трубопровода при наличии в нем рабочей среды;
 - использовать клапан в качестве опоры для трубопровода;
- класть на клапан и приводные устройства отдельные детали или монтажный инструмент при монтаже:
 - применять уплотнения большего или меньшего сечения;
 - применять удлинители к ключам крепежных деталей;
 - эксплуатировать клапан без заземления ЭИМ.

3.3 Неисправности и методы их устранения.

Перечень возможных неисправностей в процессе эксплуатации и рекомендации по их устранению приведены в таблице 8.

Таблица 8

Наименование неисправностей, внешнее проявление и признаки	Вероятная причина	Метод устранения
1	2	3
1. Плунжер не совершает полный ход	Клапан разрегулирован по ходу	Произвести регулировку хода плунжера
2. Перемещение штока затруднено	Загрязнились или заели (повредились) подвижные детали клапана	1. Разобрать клапан, промыть, прочистить от грязи, зачистить возможные задиры. Смазать все подвижные детали, несоприкасающиеся с рабочей средой, смазкой ЦИАТИМ-221 ГОСТ 9433, собрать и настроить клапан 2. Произвести несколько циклов «открыто – закрыто» для проверки плавности хода
3. Пропуск среды через место соединения корпуса с крышкой	1. Недостаточно уплотнена прокладка 2.Повреждена прокладка	1. Уплотнить место соединения равномерной затяжкой гаек 2. Заменить прокладку
4. Пропуск среды через затвор выше нормы	Повреждена уплотнительная поверхность плунжера	Проточить уплотнитель на глубину повреждения (фторопласт) или заменить плунжер
5. Температура корпуса электродвигателя ЭИМ выше рабочей (65°C)	1. Повреждена электро-схема, неправильное электроподключение 2. Сильная затяжка гайки сальникового узла	1. Проверить монтаж и электросхему. 2. Ослабить гайку сальникового узла с сохранением его герметичности в пределах рабочего режима клапана
6. Не герметичность сальника	Ослаблена затяжка гайки сальникового узла Повреждены уплотнительные кольца	1.Уплотнить сальник дополнительной затяжкой гайки 2. Заменить кольца

- 3.4 Порядок разборки и сборки.
- 3.4.1 При разборке и сборке клапана обязательно:
- выполнять требования безопасности, изложенные в п. 3.2 настоящего РЭ;
- предохранять уплотнительные, резьбовые и направляющие поверхности от повреждения.
 - 3.4.2 Полную разборку клапана (см. рисунок 3) производить в следующем порядке:
 - с помощью ЭИМ поз.1 отвести плунжер поз.4 в положение «открыто»;
- отключить электропитание, отсоединить провода и контур заземления ЭИМ поз.1, снять клапан с трубопровода;
- ослабить контргайку поз.7, отвернуть гайку поз.5 и вывернуть плунжер поз.4 из присоединительной муфты ЭИМ поз.1;
 - снять ЭИМ поз.1 с клапана;
 - отвернуть гайки поз.8 (или болты поз.12), снять крышку поз.3;
 - извлечь прокладку поз.9 из корпуса поз.2;

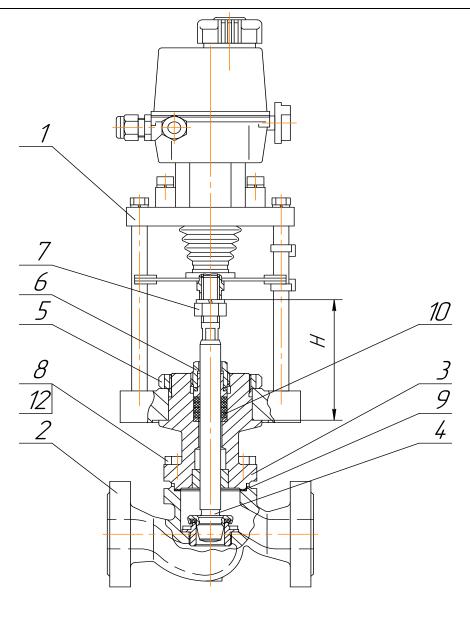


Рисунок 3

- отвернуть контргайку поз.7, ослабить гайку сальника поз.6, извлечь плунжер поз.4 из крышки поз.3;
- вывернуть гайку сальника поз.6 из крышки поз.3, извлечь уплотнение сальниковое поз.10.
- 3.4.3 Сборку клапана производить в порядке, обратном разборке, при этом тщательно очистить все детали от загрязнения, промыть, трущиеся поверхности, несоприкасающиеся с рабочей средой, смазать консистентной смазкой.
- 3.4.4 При сборке клапана необходимо произвести настройку присоединительного размера Н, указанного в инструкции по эксплуатации привода.
 - 3.4.5 Собранный клапан подвергнуть следующим испытаниям:
- на герметичность прокладочных соединений и сальникового уплотнения относительно внешней среды;
 - на герметичность затвора;
 - на работоспособность.

- 3.5 Испытания.
- 3.5.1 Испытания на герметичность прокладочных соединений и сальникового уплотнения относительно внешней среды проводятся водой давлением PN при открытом затворе, заглушенном выходном патрубке и подаче среды во входной патрубок с выдерживанием при установившемся давлении в течение времени, необходимого для осмотра, но не менее 1 мин для DN≤50 мм, 2 мин для DN от 65 мм до 200 мм, 3 мин для DN свыше 200 мм.

Контроль герметичности осуществлять по методике предприятия, производящего испытания. Пропуск среды через места соединений не допускается.

- 3.5.2 Испытание на герметичность затвора следует производить подачей воды давлением Δ Рисп во входной патрубок, при этом выходной патрубок должен быть сообщен с атмосферой. Затвор должен быть закрыт с помощью ЭИМ. Пропуск воды в затворе не должен превышать значений, указанных в таблице 9.
- 3.5.3 Испытание на работоспособность следует производить путем трехкратного срабатывания клапана с помощью ЭИМ на величину полного хода без подачи среды в клапан. Дополнительно необходимо проверить работу ручного дублера, конечных выключателей.

Клапан считается работоспособным, если все подвижные детали перемещаются плавно, без заеданий и рывков, а дополнительные блоки выполняют свои функции.

3.5.4 Клапаны, предназначенные для газообразных сред, дополнительно испытываются на герметичность прокладочных соединений и сальникового уплотнения воздухом давлением P=0,6МПа (6кгс/см²) пузырьковым методом способом обмыливания согласно ГОСТ 24054.

Клапан считают герметичным относительно внешней среды, если при установившемся давлении в течение не менее 3 мин не обнаружено появления мыльных пузырьков.

4 Хранение

- 4.1 Клапаны следует хранить в упаковке предприятия-изготовителя в закрытых складских помещениях при температуре от 5 до 50°С и относительной влажности до 80%, обеспечивающих сохранность упаковки и исправность клапанов в течение гарантийного срока.
- 4.2 Клапаны, находящиеся на длительном хранении, подвергаются периодическому осмотру не реже одного раза в год. При нарушении консервации произвести консервацию вновь. Консервационную смазку наносить на обезжиренную чистую и сухую поверхность деталей. Обезжиривание производить чистой ветошью, смоченной в бензине.

5 Транспортирование

5.1 Условия транспортирования должны обеспечивать сохранность клапанов и их упаковки.

Клапаны перевозят транспортом всех видов в соответствии с правилами перевозки грузов, действующими на транспорте данного вида.

Таблица 9

	2549	945п	25ч945п /	25ч945нж	2549	45нж			
	при относите 0,001%	льной утечке от Kvy		ельной утечке ,1% от Кvy)	при относительной утечке 0,005% от Kvy				
Кvy, м³/час	∆Рисп =	:1,6МПа	∆Рисп =	=0,4МПа	∆Рисп =1,6МПа				
	Qзат, не более								
	дм³/мин	мл/мин	MM ³ /C	см ³ /мин	дм³/мин	мл/мин			
0,1	0,06×10 ⁻³	0,06	55	3,3	0,33×10 ⁻³	0,33			
0,16	0,11×10 ⁻³	0,11	88	5,3	0,53×10 ⁻³	0,53			
0,25	0,17×10 ⁻³	0,17	138	8,3	0,83×10 ⁻³	0,83			
0,4	0,26×10 ⁻³	0,26	217	13	0,0013	1,3			
0,63	0,42×10 ⁻³	0,42	333	20	0,0021	2,1			
1,0	0,64×10 ⁻³	0,64	550	33	0,0033	3,3			
1,6	1,10×10 ⁻³	1,1	883	53	0,0053	5,3			
2,5	1,60×10 ⁻³	1,6	1,4×10 ³	84	0,0083	8,3			
4,0	3,0×10 ⁻³	3	2,2×10 ³	132	0,013	13			
6,3	4,0×10 ⁻³	4	3,3×10 ³	198	0,021	21			
10	0,007	7	5,5×10 ³	330	0,033	33			
16	0,011	11	8,8×10 ³	528	0,053	53			
25	0,017	17	1,4×10 ⁴	840	0,083	83			
32	0,020	20	1,7×10 ⁴	1,0×10 ³	0,11	110			
40	0,027	27	2,2×10 ⁴	1,3×10 ³	0,13	130			
63	0,042	42	3,3×10 ⁴	2,0×10 ³	0,21	210			
80	0,052	52	4,3×10 ⁴	2,6×10 ³	0,27	270			
100	0,066	66	5,5×10 ⁴	3,3×10 ³	0,33	330			
125	0,080	80	6,8×10 ⁴	4,1×10 ³	0,42	420			
160	0,110	110	8,8×10 ⁴	5,3×10 ³	0,53	530			
250	0,170	170	1,4×10 ⁵	8,4×10 ³	0,83	830			
320	0,210	210	1,7×10 ⁵	1,0×10 ⁴	1,10	1100			
400	0,270	270	2,2×10 ⁵	1,3×10 ⁴	1,30	1300			
500	0,330	330	2,7×10 ⁵	1,6×10 ⁴	1,60	1600			
630	0,420	420	3,3×10 ⁵	2,0×10 ⁴	2,10	2100			
800	0,530	530	4,3×10 ⁵	2,6×10 ⁴	2,60	2600			
1000	0,660	660	5,5×10 ⁵	3,3×10 ⁴	3,30	3300			
1250	0,830	830	6,8×10 ⁵	4,1×10 ⁴	4,10	4100			
1600	1,100	1100	8,8×10 ⁵	5,3×10 ⁴	5,30	5300			

5.2 Условия транспортирования и хранения - по группе 4 (Ж2) ГОСТ 15150.

Для клапанов, упакованных в ящики из гофрированного картона по ГОСТ 9142, условия транспортирования в части воздействия климатических факторов внешней среды - по группе 5 (ОЖ4) ГОСТ 15150, а в части воздействия механических факторов - легкие (Л) и средние (С) по ГОСТ 23170.

5.3 Допускается транспортирование клапанов DN300 без тары при условии обеспечения изготовителем или поставщиком надежной установки и крепления клапанов на транспортном средстве и защиты от воздействий окружающей среды.

Механические повреждения и загрязнения внутренних поверхностей клапанов и уплотнительных поверхностей фланцев при транспортировании не допускаются.

5.4 При поставке клапанов с ответными фланцами при транспортировании допускается снимать последние, укладывая их вместе с крепежными деталями в одну тару с клапаном.

6 Утилизация

Перед отправкой на утилизацию из арматуры удаляют остатки рабочей среды. Методики удаления рабочей среды и дезактивации арматуры должны быть утверждены в установленном порядке.

Изделие не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем клапан.

